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Instabilities of an electron cloud in a Penning trap
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Abstract. We have measured the storage instabilities of electrons in a Penning trap at low magnetic fields.
These measurements are carried out as a function of the trapping voltage, for different magnetic fields.
It is seen that these instabilities occur at the same positions when the trapping voltage is expressed as a
percentage of the maximum voltage, given by the stability limit. The characteristic frequencies at which
these instabilities occur, obey a relation that is given by nzωz + n+ω+ + n−ω− = 0, where ωz, ω+ and ω−
are the axial, perturbed cyclotron and the magnetron frequencies of the trapped electrons respectively, and
the n’s are integers. The reason for these instabilities are attributed to higher order static perturbations
in the trapping potential.

PACS. 52.27.Aj Single-component, electron-positive-ion plasma – 82.80.Qx Ion cyclotron resonance
mass spectrometry

1 Introduction

Penning traps [1] have been used in recent years for a vari-
ety of experiments: measurement of electronic or nuclear g
factors, [2–5], high precision mass measurements [6–9], or
plasma studies [10,11]. Three dimensional confinement of
charged particles is obtained by a static electric field ap-
plied between electrodes and superposition of a magnetic
field. Storage times of many hours or even days can be ob-
tained under well defined conditions and the stored parti-
cles are then subject to investigations.

In many of these experiments the trap serves merely
as a container which keeps the ions in place. Details of
the ion motion inside the trap are of interest only when
the motional frequencies are to be measured. This is the
case in mass spectrometry where the mass dependence of
the motional frequencies are used for comparison of the
masses of different ions. High precision measurements re-
quire the trap’s potential to be harmonic since in this case
the oscillation frequency does not depend on the ion’s po-
sition and energy. Deviations from the harmonic potential
result in shifts of the motional frequencies which would
limit the precision.

The standard Penning trap design (Fig. 1) has two
endcap electrodes and a ring electrode rotationally sym-
metric around an axis (z-axis). The superimposed mag-
netic field is directed along the z-axis. Harmonicity of the
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Fig. 1. Penning trap electrodes.

potential is obtained when the surfaces of the trap’s elec-
trodes follow hyperboloids of revolution. The potential in-
side this arrangement is a quadrupole potential,

Φ =
V

2d2
(ρ2 − 2z2) (1)

where d is the characteristic dimension of the trap,
d2 = r0

2 + 2z0
2, r0 is the ring radius and 2z0 the distance

between the trap electrodes. ρ = [x2 + y2]1/2 is the radial
coordinate. The motion of an ion inside this potential can
be described by three harmonic oscillations: an oscillation
along the z-axis (frequency ωz), a perturbed cyclotron
oscillation perpendicular to the magnetic field direction
with frequency ω+, and a slow magnetron drift of the cy-
clotron orbits around the trap center with frequency ω−.
The values of these frequencies depend on the trapping
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parameters:
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ωc = (q/m)B is the cyclotron frequency of the free particle
with charge q and mass m.

In a real trap the potential can deviate from the ideal
quadrupole geometry by imperfect shapes of the elec-
trode surfaces, by a tilt angle between the trap’s axis and
the direction of the magnetic field, and by the Coulomb
potential in case of a stored particle cloud, which con-
tributes higher order terms to the trapping potential. A
consequence of existing imperfections is that the motional
eigenfrequencies are shifted. These shifts scale with the
size of the imperfections and the ion energy. They are of
great importance in precision mass spectrometry and a
great amount of effort has been devoted to the calcula-
tion of these shifts theoretically [12–15] and to minimize
the shifts experimentally by correction electrodes [16–18].
Another consequence of these imperfections is that the
motion of charged particles may become unstable at cer-
tain operating parameters of the trap. In case of a Paul
trap where a time dependent electric field serves to cre-
ate a time-averaged three-dimensional potential minimum
for particle trapping, such ion loss has been observed
and investigated in some detail [19,20]. In a Penning
trap instabilities have been observed for the first time by
Schweikhard and coworkers [21] at some operating points
with heavy cluster ions as trapped particles. Later this has
been confirmed and extended in laser spectroscopic mea-
surements on Ba ions [22]. Such storage instabilities are
also of significance in accelerators and storage rings [23]
and considerable effort is devoted to minimizing them.

In this work, we investigate the appearance of insta-
bilities in a Penning trap when a cloud of charged parti-
cles is stored. We use electrons for our investigations since
they are easier to produce than atomic ions. Also electron
detection can be performed by simple electronic means
without use of laser excitation and fluorescence detection.
Moreover storage of electrons is possible at relatively low
magnetic fields. The results, however, are independent of
the nature of the particles and are valid for different ions.

2 Apparatus

Our Penning trap has hyperboloid-shaped electrodes. The
ring radius is 2 cm. It was previously used in laser spec-
troscopic experiments and therefore required holes of a
few mm diameter in the ring electrode and slits in one
of the endcaps. Moreover, the other endcap was made of
a metallic mesh to allow the transmission of fluorescence
from a trapped ion cloud. These modifications as well as
the truncation of the electrodes introduce deviations of the

Fig. 2. Setup for electron storage and detection.

potential from the ideal quadrupolar type. The magnetic
field in the z-direction, produced by two coils in approx-
imate Helmholtz configuration, can be varied between 0
and 10 mT. The direction of the magnetic field lines inside
the trap may have an angle with respect to the trap axis.
Electrons were injected into the trap from a hot tungsten
wire just below one endcap by a negative pulse of 100 V
amplitude and typically 10 ms length, applied to the fila-
ment. This limits the possible angle between the magnetic
field and the trap axis by the 0.5 mm diameter of the en-
trance and exit holes in the endcap electrodes to 0.015 rad.
While the endcap electrodes were held at ground poten-
tial, a constant positive storage voltage was applied to the
ring for a time which could be varied between 10 ms and
virtually infinity, before being ramped down to negative
values.

Detection of trapped electrons was facilitated by con-
necting a tank circuit consisting of an inductance and a
capacitance in parallel to an endcap electrode (Fig. 2). It
was weakly excited at its resonance frequency ωLC (2π ×
20 MHz). When the trapping voltage V is ramped down
the electron’s axial frequency ωz changes according to
equation (2). For a particular value of the voltage it co-
incides with ωLC, leading to an energy transfer from the
circuit to the electrons. The corresponding damping of the
circuit was detected as a drop in the measured voltage
across the endcap (Fig. 3). After rectification we obtained
a signal whose amplitude is proportional to the number
of trapped electrons, which was then digitized for further
handling. The ramp voltage was lowered until it changed
sign to ensure that all electrons leave the trap after be-
ing detected. This was followed by a new cycle of electron
creation, storage and detection. From the size and shape
of the detection signal the number of trapped electrons
can be estimated knowing the gain of the detection elec-
tronics [24]. A typical number is 105. This order of mag-
nitude is confirmed by the observed space charge shift of
the axial oscillation frequency from which a number can
be deduced using a simple model for the electron density
distribution [25].
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Fig. 3. Damping signal from a stored electron cloud.

Fig. 4. Excitation spectrum of motional frequencies of the
electron cloud.

3 Measurements and results

We measured the motional resonances of the electrons
by applying an additional r.f-field capacitively coupled
to the ring electrode using it as antenna, and sweeping
the frequency of this field. The electrons become excited
whenever the frequency coincides with one of the motional
modes. Some of the electrons leave the trap and the mo-
tional resonances appear as minima in the detection sig-
nal. Figure 4 shows such a spectrum which contains the
fundamental oscillation frequencies ω− (magnetron), ωz

(axial), and ω+ (perturbed cyclotron) as well as some lin-
ear combinations or multiples of these frequencies. The
number of observed combinations depends on the ampli-
tude of the applied r.f-field. Identification of the pure cy-
clotron frequency, ωc, enables us to determine the mag-
netic field accurately, in the trapping region.

We also measured the number of trapped electrons (in
relative units) for a given trapping potential and a fixed
magnetic field and averaged over a few detection signals
to reduce the statistical scatter of the signal height. The
amplitude of the signal was stable within a few percent.
The trapping voltage was incremented by a small amount
and a new value of the signal height recorded. The lowest
trapping voltage in our experiment was 10 V, and was the

voltage at which the electron’s axial frequency ωz equals
the resonance frequency of the tank circuit. The maximum
trapping voltage is decided by the maximum allowed value
for stable confinement for a given magnetic field. This is
derived from the condition that the term under the root
appearing in equations (3, 4) must be positive:

ωc
2 ≥ 2ωz

2 (5)

from which it follows that

Vmax =
q

2m
d2B2. (6)

Data were taken at different values of the magnetic field
and for different storage times, ranging from 10 ms to sev-
eral seconds. When we plot the measured electron number
for a fixed magnetic field and a fixed storage time as func-
tion of the trapping voltage we observed a reduction of the
electron number at some discrete points for small values
of V . They became more pronounced at higher voltages
until finally no electrons could be detected at all. Figure 5
shows an example for B = 3.2 mT and storage times up to
3 600 ms between electron creation and detection. Similar
studies were conducted for different values of the B-field.
Generally, no electrons could be observed when the trap-
ping voltage exceeded about half the value calculated from
the stability criterion (Eq. (6)). More and broader minima
in the detection signal appeared for longer storage times.
At storage times of a few seconds they were extremely
broad indicating that stable storage of electrons was im-
possible at these storage times.

4 Discussion

The experimental results can be displayed in a general way
when we normalize the trapping voltage to the calculated
voltage limit at each magnetic field as in Figure 6. Then it
is seen that the instabilities occur always at certain frac-
tions of the normalized voltage. These positions are given
by a simple relation between the motional frequencies of
the electrons:

nzωz + n+ω+ + n−ω− = 0 (7)

where nz , n+, n− are integers. Figure 6 indicates the po-
sitions of these instabilities for a few sets of integers. In
order to predict the sets of integers (nz, n+, n−) where
storage instabilities occur, we follow an analysis as sug-
gested by Kretzschmar [26]. By rewriting (7), using (3)
and (4), we obtain,

(n+ + n−)ωc + 2nzωz = (n− − n+)
√

ωc
2 − 2ωz

2. (8)

Squaring this on both sides, leads to a linear relation be-
tween ωz and ωc:

ωz = Kωc (9)
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Fig. 5. Detected electron number (in arbitrary units) as a
function of the storage potential. Data were taken at a fixed
magnetic field (3.2 mT) and for different storage times.

where K is a proportionality constant related to the inte-
gers and is given by

K =
B ±√

B2 − AC

A
(10)

A = 2(n+ − n−)2 + 4nz
2 (11)

B = −2(n+ + n−)nz (12)
C = 4n+n−. (13)

The upper limit is given by Kmax = 1/
√

2 and represents
the stability limit. Figure 7 shows plots for representative
values of K obtained from the integer triplets we have
recorded in our measurements. Motional instabilities thus
may occur, at frequencies that satisfy equation (9) for any
particular value of K. The predictions and the experimen-
tally observed instabilities agree on the 1% level which is
the uncertainty of the measured voltages at which they
occur.

The appearance of instabilities is explained by consid-
ering the expansion of the trapping potential in a series of
spherical harmonics Pn(cos θ) [12]:

Φ =
∞∑

n=0

cn

( r

r0

)n

Pn(cos θ) (14)

n = 2 gives the ideal quadrupole potential and non-zero
coefficients cn indicate the existence of perturbing poten-
tials of order n, which are time-independent and are at-
tributed to imperfections in the shapes of the electrodes,

   
   

 

 

 

 

 

Fig. 6. Stored electron number (in arbitrary units) for different
magnetic fields as a function of the trapping voltage. The volt-
age is normalized to the stability limit given by equation (6).
The storage time is fixed to 600 ms.

misalignments or space charge effects in the trapping re-
gion. In his work, Kretzschmar [13,14] applies perturba-
tion theory formulated in terms of action-angle variables,
for determining the shifts in the characteristic frequen-
cies in a perturbed orbit, for perturbations that are time-
independent as well as time-dependent. For static per-
turbations, as in our case, perturbative singularities are
shown to occur when the frequencies satisfy equation (7).
The details of these calculations may be found in these
references and are not elaborated here. In this context
it should be mentioned here that the method of Birkhoff
normal forms can also be applied [27] in predicting these
instabilities.

In addition to theoretically predicting these instabili-
ties, an expansion of the potential in a Fourier series [13]
reveals the restriction on the integers in equation (7):

|n+| + |n−| + |nz| ≤ n. (15)

From the above equation, it is clear that for a given set
of integers that satisfies equation (7), we can assume the
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Fig. 7. Lines of instabilities within the stable region of a
Penning trap following equation (9). The experimentally ob-
served instabilities are indicated by dots.

likely presence of perturbing potentials at least of or-
der n, that cause the instability. Thus, in our case (Fig. 7),
there are perturbations of at least 3rd order (sextuplet) or
higher, in the potential. For any given K, in equation (9),
there can be more than one integer set [26]. For example,
in our case for K = 0.577, there are two sets of integers
(n+, n−, nz) that can give the same value for K, namely
(1,−1,−1) and (2,−2,−2). However we observe the insta-
bility relation for (1,−1,−1), and not (2,−2,−2) (Fig. 7).
This could be because of the absence of perturbing poten-
tials of order 6 (Eq. (15)) in our trap. On the other hand,
for K = 0.545, we can also, in principle, observe an insta-
bility for integer set (0,−3, 1), which would indicate the
likelihood of 4th order perturbations or higher. However,
we do not observe any instability that satisfies this partic-
ular integer set, despite the presence of other instabilities
(K = 0.519, (1,−2,−1) or K = 0.408, (1,−1,−2)) that
indicate the presence of 4th order perturbations. The rea-
son for not observing this particular instability could be
due to a limitation imposed by the finite storage time of
electrons. Nevertheless, it should be borne in mind that
equation (15) sets a lower bound on the order of the per-
turbing potential that may be causing a given instability,
but it does not indicate that this order of the perturbation
exists definitely.

In the presence of time-dependent perturbations as in
Paul traps or the combined trap [28], instabilities have
been observed for the characteristic frequencies, that sat-
isfy an equation analogous to equation (7). For the Paul
trap [19,20] these occur for the frequencies obeying the
following relation:

nrωr + nzωz + nΩΩ = 0 (16)

where ωr, ωz and Ω are the radial, axial and the AC field
frequencies respectively and nr, nz and nΩ are integers,
Wang et al. [29] have solved the nonlinear Mathieu equa-
tions to predict equation (16). This instability relation is
analogous to equation (7), with the magnetron frequency
being replaced with the radial frequency and the per-
turbed cyclotron frequency, with the AC field frequency.

In [13], it is pointed out that the equations of motion for
a Penning trap can be transformed to Mathieu equations
by rotations to a coordinate frame rotating at ωc/2 and
by the inclusion of a time-dependent driving term. The re-
sultant equations then are solved to predict a relation as
given in equation (7). This is also established in an anal-
ysis of the combined trap [28] where it is shown that the
radial frequency term reduces to ωc/2 when the magnetic
field is finite and the r.f voltage is set to zero. However,
as experimentally demonstrated in our work, we are able
to observe these motional instabilities arising from purely
static perturbations and wherein the frequencies satisfy
equation (7).

5 Conclusion

We have carried out experiments to measure the motional
instabilities of electrons in a Penning trap. These insta-
bilities are caused by static perturbations of the potential
in the trap and result in the electrons leaving the trap.
They are found to occur when the characteristic frequen-
cies obey a relation as in equation (7), a relation predicted
theoretically, by standard methods of classical perturba-
tion theory. Further, equation (15) shows that it is pos-
sible, for a given instability, to establish the lowest order
of the perturbing potential that may be the cause of this
instability.

These motional instabilities are of interest for inves-
tigating the nonlinear properties of ion traps. They can
however, be the undesirable consequences of static and
time dependent perturbations, as in mass spectrometry,
or where storage of charged particles for relatively longer
times is desired. It is also shown that a relation analo-
gous to equation (7) holds good for those frequencies in
storage rings at which the motion of the accelerated par-
ticles become unstable. Our work represents to the best of
our knowledge, the first detailed experimental studies on
these storage instabilities in Penning Trap in the presence
of static perturbations.
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